Representative data in estimating the height of the mangrove forest canopy

Authors

Keywords:

Mangrove, LiDAR, Guaratiba, Remote Sensing

Abstract

Introduction: The use of remote sensing in environmental studies has become increasingly promising, mainly due to its facilitating factor when dealing with inhospitable places. The study area is a small section of 4 acres located in the Guaratiba State Biological Reserve, which plays a very important role in preserving the remaining mangroves in the metropolitan region of Rio de Janeiro. This cutout was chosen due to accessibility criteria, given the need to enter the mangrove to collect data. Objective: The work sought to map this small area, characterizing the mangrove species and their heights, with the objective of relating the height data of the species obtained in the field with the 2019 LiDAR data, in order to understand whether these data , even after three years, are still significant. Results: The three species found in the area were Rhizophora Mangle (red mangrove), Avicennia schaueriana (black mangrove) and Laguncularia racemosa (white mangrove), which are the three predominant species in the surrounding area (ALMEIDA, 2010). Thus, when comparing the data obtained by the two surveys of canopy height, field and remote, 91 of the 106 points showed agreement in a global correlation of 85.85%. The classification was divided into heights E1, E2, E3, E4 to assist in the quick characterization in the field. In addition, the micro topography was compared in relation to the height of the trees, in which the presence of more developed individuals of Rhizophora and Laguncularia was identified in areas of lower altitude or more flooded, while those of Avicennia occur in the opposite process. Finally, it was possible to identify that even with the difference of three years, the height values obtained by LiDAR in the area are still representative, and that it is possible to estimate the canopy height of mangrove species using the 2019 LiDAR sensor currently.

Downloads

Download data is not yet available.

References

ALMEIDA, P. M. M..; CRUZ,, C. B. M.; AMARAL, F. G.; FURTADO, L. F. A.; DUARTE, G. S.; DA SILVA, G. F.; DE BARROS, R. F.; MARQUES, J. V. F. P. A.; BASTOS, R. M. C.; ROSARIO, E. S.; SANTOS, V. F.; ALVES, A.; CHAVES, F. O.; & SOARES, M. L. G. Mangrove Typology: A Proposal for Mapping based on High Spatial Resolution Orbital Remote Sensing. Journal of Coastal Research, v. 95, (SI), p. 1-5. mai/2020

ALMEIDA, P. M. M; SCHMID, K.; CRUZ, C. B. M; SOARES, M. L. G. Dinâmica de um remanescente de floresta de mangue do município do Rio de Janeiro. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 15, 2011, Curitiba. Anais XV Simpósio Brasileiro de Sensoriamento Remoto - SBSR, Curitiba: INPE, 2011. p.1982.

Blasco, F., Gauquelin, T., Rasolofoharinoro, M., Denis, J., Aizpuru, M., & Caldairou, V. Recent advances in mangrove studies using remote sensing data. Marine and Freshwater Research, 1998, 49(4), 287-296.

CARIS, E. A. P., CRUZ, C. B. M., & KURTZ, B. C. Analysis of Altimetric Data Obtained by Lidar in an Area of Atlantic Forest in Southeastern Brazil. Revista Tamoios, São Gonçalo (RJ), v. 16, n. 2, pág. 67-85, jan-jun 2020

GIONGO, M.; KOEHLER, H. S., MACHADO, S. A., KIRCHNER, F. F., MARCHETTI, M. LiDAR: princípios e

aplicações florestais. Pesquisa Florestal Brasileira, Curitiba, v. 30, n. 63, p. 231-244. ago./out. 2010.

HEUMANN, B. W. Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Sage Journals [online], v. 35, n. 1, pp. 87–108. fev.201.

MADI, A. P. L. M.; BOEGER, M. R. T.; LARCHER, L.; PELOZO, A.; SERENESKI, C.; REISSMANN, C. B.; PADIAL,

A. A. Estatura do componente de regeneração natural e arbóreo de dois manguezais no estado do Paraná. Ciência Florestal, Santa Maria, v. 26, n. 1, p. 159-170. jan./mar. 2016.

SCHAEFFER-NOVELLI, Y., VALE, CC., and CINTRÓN, G. Monitoramento do ecossistema manguezal: estrutura e características funcionais. In: TURRA, A., and DENADAI, MR., orgs. Protocolos para o monitoramento de habitats bentônicos costeiros – Rede de Monitoramento de Habitat Bentônicos Costeiros – ReBentos [online]. São Paulo: Instituto Oceanográfico da Universidade de São Paulo, 2015, pp. 62-80. ISBN 978-85-98729-25-1. Available from SciELO Books.

SOUZA, B. B. de; MELO, J. D. de; CORREA, M.; MOURA, A. O.; SANTOS, F. F.; GUIMARÃES, M. C.; BARROS NETO, H. M. C. de. S AO MAPEAMENTO E QUANTIFICAÇÃO DE ÁREAS DE MANGUEZAL NO ESTADO DE SERGIPE. Caminhos de Geografia, Uberlândia, v. 17, n. 57, p. 126–134, 2016.

PETRI, D. J. C.; BERNINI, E.; SOUZA, L. M.; REZENDE, C. E. Distribuição das espécies e estrutura do manguezal do rio Benevente. Biota Neotropica [online], Anchieta - ES, v. 11, n. 3, pp. 107-116. set.2011.

PHAM, T. D.; YOKOYA, N.; BUI, D. T., YOSHINO, K.; FRIESS, D. A. Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sens, MDPI, v. 11, nº 3, pp. 230. jan.2019.

Published

2023-09-05

How to Cite

MACHADO, G. F. de S.; OLIVEIRA, B. A. G. de; RAMOS, M. do N.; AMARAL, F. G.; CRUZ, C. B. M. Representative data in estimating the height of the mangrove forest canopy. GeoPuc, Rio de Janeiro, Brasil, v. 15, n. 29, p. e00014, 2023. Disponível em: https://geopuc.emnuvens.com.br/revista/article/view/14. Acesso em: 21 may. 2025.

Issue

Section

Dossiê XIX Simpósio Brasileiro de Geografia Física Aplicada