METHODOLOGIES FOR MONITORING ATLANTIC FOREST DERIVED FROM HIGH RESOLUTION SATELLITE IMAGES
Keywords:
Remote Sensing, High Resolution Imaging, Visual Classification, Automatic Classification, Atlantic ForestAbstract
This research aimed to develop a methodology for semi-automatic classification of multitemporal pattern of Atlantic forest cover. The main objective was to detect changes in coverage that occurred in forest fragments derived from IKONOS high-resolution images. To do this you have selected the northern portion of the massif of Pedra Branca in the city of Rio de Janeiro where images were acquired of the years 2009 and 2010. The images were visually rated and ortorretificas. Later using geographic knowledge generated in the visual classification is created a semantic model of classification that has been implemented in software InterImage. The results were promising suggesting that integration of the two methods allows greater speed and reliability in the classification process.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Luiz Felipe Guanaes Rego
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Os Direitos Autorais dos artigos publicados na revista GeoPUC pertencem aos seus respectivos autores, com os direitos de primeira publicação cedidos à Revista. Toda vez que um artigo for citado, replicado em repositórios institucionais e/ou páginas pessoais ou profissionais, deve-se apresentar um link para o artigo disponível no site da GeoPUC.
Os trabalhos publicados estão simultaneamente licenciados com uma Licença Creative Commons BY-NC-SA 4.0.